

[4910-13-P]

DEPARTMENT OF TRANSPORTATION

Federal Aviation Administration

14 CFR Part 39

[Docket No. FAA-2017-0494; Directorate Identifier 2016-NM-126-AD]

RIN 2120-AA64

Airworthiness Directives; Dassault Aviation Airplanes

AGENCY: Federal Aviation Administration (FAA), DOT.

ACTION: Notice of proposed rulemaking (NPRM).

SUMMARY: We propose to supersede Airworthiness Directive (AD) 2016-17-02 for certain Dassault Aviation Model FALCON 900EX and FALCON 2000EX airplanes. AD 2016-17-02 currently requires revising the airplane flight manual (AFM) to include procedures to follow when an airplane is operating in icing conditions. AD 2016-17-02 also provides optional actions after which the AFM revision may be removed from the AFM. Since we issued AD 2016-17-02, we have determined additional actions are necessary to address the identified unsafe condition. This proposed AD would retain the requirement of AD 2016-17-02 and, in addition, require a detailed inspection of the wing anti-ice system ducting (anti-ice pipes) for the presence of a diaphragm, and replacement of ducting or re-identification of the ducting part marking. We are proposing this AD to address the unsafe condition on these products.

DATES: We must receive comments on this proposed AD by [INSERT DATE 45 DAYS AFTER DATE OF PUBLICATION IN THE FEDERAL REGISTER].

ADDRESSES: You may send comments, using the procedures found in 14 CFR 11.43 and 11.45, by any of the following methods:

- Federal eRulemaking Portal: Go to http://www.regulations.gov. Follow the instructions for submitting comments.
 - Fax: 202-493-2251.
- Mail: U.S. Department of Transportation, Docket Operations, M-30, West
 Building Ground Floor, Room W12-140, 1200 New Jersey Avenue SE., Washington, DC
 20590.
- Hand Delivery: U.S. Department of Transportation, Docket Operations, M-30,
 West Building Ground Floor, Room W12-140, 1200 New Jersey Avenue SE.,
 Washington, DC, between 9 a.m. and 5 p.m., Monday through Friday, except Federal holidays.

For service information identified in this NPRM, contact Dassault Falcon Jet Corporation, Teterboro Airport, P.O. Box 2000, South Hackensack, NJ 07606; telephone 201-440-6700; Internet http://www.dassaultfalcon.com. You may view this referenced service information at the FAA, Transport Airplane Directorate, 1601 Lind Avenue SW., Renton, WA. For information on the availability of this material at the FAA, call 425-227-1221.

Examining the AD Docket

You may examine the AD docket on the Internet at http://www.regulations.gov by searching for and locating Docket No. FAA-2017-0494; or in person at the Docket Management Facility between 9 a.m. and 5 p.m., Monday through Friday, except Federal holidays. The AD docket contains this proposed AD, the regulatory evaluation, any comments received, and other information. The street address for the Docket Operations office (telephone 800-647-5527) is in the ADDRESSES section. Comments will be available in the AD docket shortly after receipt.

FOR FURTHER INFORMATION CONTACT: Tom Rodriguez, Aerospace Engineer, International Branch, ANM-116, Transport Airplane Directorate, FAA, 1601 Lind Avenue SW., Renton, WA 98057-3356; telephone 425-227-1137; fax 425-227-1149.

SUPPLEMENTARY INFORMATION:

Comments Invited

We invite you to send any written relevant data, views, or arguments about this proposed AD. Send your comments to an address listed under the ADDRESSES section. Include "Docket No. FAA-2017-0494; Directorate Identifier 2016-NM-126-AD" at the beginning of your comments. We specifically invite comments on the overall regulatory, economic, environmental, and energy aspects of this proposed AD. We will consider all comments received by the closing date and may amend this proposed AD based on those comments.

We will post all comments we receive, without change, to http://www.regulations.gov, including any personal information you provide. We will also post a report summarizing each substantive verbal contact we receive about this proposed AD.

Discussion

On August 5, 2016, we issued AD 2016-17-02, Amendment 39-18615 (81 FR 55366, August 19, 2016) ("AD 2016-17-02"), for certain Dassault Aviation Model FALCON 900EX and FALCON 2000EX airplanes. AD 2016-17-02 was prompted by a design review of in-production airplanes that identified a deficiency in certain wing anti-ice system ducting. A deficiency in the wing anti-ice system ducting could lead to undetected, reduced performance of the wing anti-ice system, with potential ice accretion and ingestion, possibly resulting in degraded engine power and degraded handling characteristics of the airplane. AD 2016-17-02 requires revising the AFM to include procedures to follow when an airplane is operating in icing conditions. AD 2016-17-02 also provides optional actions after which the AFM revision may be removed from the AFM. We issued AD-2016-17-02 to ensure the flight crew has procedures for operating an airplane in icing conditions.

When we issued AD 2016-17-02, we stated that it was an interim action and we were considering additional rulemaking to require a detailed inspection of the wing anti-icing system ducting for the presence of a diaphragm and, as applicable, re-identification or replacement of the wing anti-icing system ducting (these actions are required by the MCAI). We have determined that requiring those additional actions are necessary to address the identified unsafe condition.

The European Aviation Safety Agency (EASA), which is the Technical Agent for the Member States of the European Union, has issued EASA Emergency Airworthiness Directive 2016-0130-E, dated July 5, 2016 (referred to after this as the Mandatory Continuing Airworthiness Information, or "the MCAI"), to correct an unsafe condition for certain Dassault Aviation Model FALCON 900EX and FALCON 2000EX airplanes. The MCAI states:

A design review of in production aeroplanes identified a manufacturing deficiency of some wing anti-ice system ducting.

This condition, if not detected and corrected, could lead to an undetected reduced performance of the wing anti-ice system, with potential ice accretion and ingestion, possibly resulting in degraded engine power and degraded handling characteristics.

The Falcon 900EX EASY and Falcon * * * [2000EX] Aircraft Flight Manuals (AFM) contain a normal procedure 4-200-05A, "Operations in Icing Conditions", addressing minimum fan speed rotation (N1) during combined operation of wing anti-ice and engine anti-ice systems. The subsequent investigation demonstrated that the wing anti-ice system performance for aeroplanes equipped with ducting affected by the manufacturing deficiency can be restored increasing N1 value. In addition, Dassault Aviation published Service Bulletin (SB) F900EX-464 (for Falcon 900EX aeroplanes) and SB F2000EX-393 (for Falcon 2000EX aeroplanes), providing instructions for wing anti-ice system ducting inspection.

For the reasons described above, this [EASA] AD requires an AFM amendment and a one-time [detailed] inspection of the wing anti-ice system ducting [and, as applicable, a check of the part number,] and, depending on findings, re-identification or replacement of the wing anti-ice system ducting.

You may examine the MCAI in the AD docket on the Internet at http://www.regulations.gov by searching for and locating Docket No. FAA-2017-0494.

Related Service Information under 1 CFR part 51

Dassault has issued Service Bulletin F900EX-464, dated June 20, 2016; and Service Bulletin F2000EX-393, dated June 20, 2016. The service information describes procedures for an inspection of the wing anti-ice system ducting and re-identification or replacement of the wing anti-ice system ducting. These documents are distinct since they apply to different airplane models. This service information is reasonably available because the interested parties have access to it through their normal course of business or by the means identified in the ADDRESSES section.

FAA's Determination and Requirements of this Proposed AD

This product has been approved by the aviation authority of another country, and is approved for operation in the United States. Pursuant to our bilateral agreement with the State of Design Authority, we have been notified of the unsafe condition described in the MCAI and service information referenced above. We are proposing this AD because we evaluated all pertinent information and determined an unsafe condition exists and is likely to exist or develop on other products of these same type designs.

Costs of Compliance

We estimate that this proposed AD affects 52 airplanes of U.S. registry.

The action required by AD 2016-17-02, and retained in this proposed AD takes about 1 work-hour per product, at an average labor rate of \$85 per work-hour. Based on these figures, the estimated cost of the action that is required by AD 2016-17-02 is \$85 per product.

We also estimate that it would take about 4 work-hours per product to comply with the basic requirements of this proposed AD. The average labor rate is \$85 per work-hour. Based on these figures, we estimate the cost of this proposed AD on U.S. operators to be \$17,680, or \$340 per product.

In addition, we estimate that any necessary follow-on actions would take about 19 work-hours and require parts costing \$24,000, for a cost of \$25,615 per product. We have no way of determining the number of aircraft that might need these actions.

Authority for this Rulemaking

Title 49 of the United States Code specifies the FAA's authority to issue rules on aviation safety. Subtitle I, section 106, describes the authority of the FAA Administrator. "Subtitle VII: Aviation Programs," describes in more detail the scope of the Agency's authority.

We are issuing this rulemaking under the authority described in "Subtitle VII, Part A, Subpart III, Section 44701: General requirements." Under that section, Congress charges the FAA with promoting safe flight of civil aircraft in air commerce by prescribing regulations for practices, methods, and procedures the Administrator finds necessary for safety in air commerce. This regulation is within the scope of that authority because it addresses an unsafe condition that is likely to exist or develop on products identified in this rulemaking action.

Regulatory Findings

We determined that this proposed AD would not have federalism implications under Executive Order 13132. This proposed AD would not have a substantial direct

effect on the States, on the relationship between the national Government and the States, or on the distribution of power and responsibilities among the various levels of government.

For the reasons discussed above, I certify this proposed regulation:

- 1. Is not a "significant regulatory action" under Executive Order 12866;
- 2. Is not a "significant rule" under the DOT Regulatory Policies and Procedures (44 FR 11034, February 26, 1979);
 - 3. Will not affect intrastate aviation in Alaska; and
- 4. Will not have a significant economic impact, positive or negative, on a substantial number of small entities under the criteria of the Regulatory Flexibility Act.

List of Subjects in 14 CFR Part 39

Air transportation, Aircraft, Aviation safety, Incorporation by reference, Safety.

The Proposed Amendment

Accordingly, under the authority delegated to me by the Administrator, the FAA proposes to amend 14 CFR part 39 as follows:

PART 39 - AIRWORTHINESS DIRECTIVES

1. The authority citation for part 39 continues to read as follows:

Authority: 49 U.S.C. 106(g), 40113, 44701.

§ 39.13 [Amended]

2. The FAA amends § 39.13 by removing Airworthiness Directive (AD) 2016-17-02, Amendment 39-18615 (81 FR 55366, August 19, 2016), and adding the following new AD:

Dassault Aviation: Docket No. FAA-2017-0494; Directorate Identifier 2016-NM-126-AD.

(a) Comments Due Date

We must receive comments by [INSERT DATE 45 DAYS AFTER DATE OF PUBLICATION IN THE FEDERAL REGISTER].

(b) Affected ADs

This AD replaces AD 2016-17-02, Amendment 39-18615 (81 FR 55366, August 19, 2016) ("AD 2016-17-02").

(c) Applicability

This AD applies to the Dassault Aviation airplanes identified in paragraphs (c)(1) and (c)(2) of this AD, certificated in any category.

- (1) Model Falcon 900EX airplanes, serial numbers (S/Ns) 270 through 291 inclusive and 294.
- (2) Model FALCON 2000EX airplanes, S/Ns 263 through 305 inclusive, 307 through 313 inclusive, 315, 320, and 701 through 734 inclusive.

(d) Subject

Air Transport Association (ATA) of America Code 30, Ice and Rain Protection.

(e) Reason

This AD was prompted by a design review of in-production airplanes that identified a deficiency in certain wing anti-ice system ducting. We are issuing this AD to detect and correct a deficiency in the wing anti-ice system ducting, which could result in reduced performance of the wing anti-ice system with potential ice accretion and

ingestion, and could result in degraded engine power and degraded handling characteristics.

(f) Compliance

Comply with this AD within the compliance times specified, unless already done.

(g) Retained Revision to the Airplane Flight Manual (AFM), with No Changes

This paragraph restates the requirements of paragraph (g) of AD 2016-17-02, with no changes.

(1) For Model Falcon 900EX airplanes on which the actions specified in Dassault Service Bulletin F900EX-464 have not been accomplished: Within 10 flight cycles after September 6, 2016 (the effective date of AD 2016-17-02), revise Section 4-200-05A, "OPERATION IN ICING CONDITIONS," of the Model Falcon 900EX AFM to include the information in figure 1 to paragraph (g)(1) of this AD, and thereafter operate the airplane accordingly. The AFM revision may be done by inserting a copy of this AD into the AFM.

Figure 1 to Paragraph (g)(1) of this AD – Operation in Icing Conditions

Wings Anti-Ice System Operation

During in-flight operation of a wings anti-ice system (WINGS ANTI-ICE) maintain the N1 of all engines equal to or more than the values defined in Table 1, as applicable to atmospheric condition.

Table 1

New Minimum N1 values required during in-flight operation of a wings anti-ice system

Three operative engines:

Times operative engines.				
TAT	− 30 to − 20 °C	– 20 to – 10 °C	− 10 to 0 °C	0 to + 10 °C
Above 20,000 ft	79%	75%	71%	66%
From 20,000 ft to 10,000 ft	76%	73%	66%	59%
Below 10,000 ft	68%	66%	61%	58%

These new values include 3% increase compared to former values (4-200-05A page 1/2).

Two operative engines:

1 we operative engines.				
TAT	- 30 to - 20 °C	– 20 to – 10 °C	- 10 to 0 °C	0 to + 10 °C
Above 20,000 ft	86%	82%	78%	73%
From 20,000 ft to 10,000 ft	83%	80%	73%	66%
Below 10,000 ft	75%	73%	68%	65%

These new values include 3% increase compared to former values (4-200-05A page 1/2).

TAT – Total Air Temperature

Note 1: Maintaining the N1 above the minimum anti-ice N1 on all engines may lead to exceedance of approach speed. Early approach or landing configuration of an airplane and/or application of airbrakes may be used to control the airspeed. In approach and landing and for a limited duration up to three minutes, selection of N1 speeds below the minimum anti-ice N1 speed is authorized. In this case it is necessary to disengage the autothrottle.

Effectivity: F900EX (LX variant) S/N 270 to 291, 294 without Dassault Aviation SB F900EX-464.

(2) For Model Falcon 2000EX airplanes on which the actions specified in Dassault Service Bulletin F2000EX-393 have not been accomplished: Within 10 flight cycles after September 6, 2016 (the effective date of AD 2016-17-02), revise Section 4-200-05A, "OPERATION IN ICING CONDITIONS," of the Model Falcon 2000EX AFM to include the information in figure 2 to paragraph (g)(2) of this AD, and thereafter operate the airplane accordingly. The AFM revision may be done by inserting a copy of this AD into the AFM.

Figure 2 to Paragraph (g)(2) of this AD – Operation in Icing Conditions

Wing Anti Ice System Operation

During in-flight operation of a wing anti-ice system (WING ANTI-ICE) maintain the N1 of both engines equal to or more than the values defined in Table 1, as applicable to atmospheric condition.

Table 1 New Minimum N1 values required during in-flight operation of a wing anti-ice system

Two engines operative minimum N1:

Z TAT	-30 °C	-15 °C	0 °C	+10 °C
31,000 ft	74.6	67.6	52.8	52.8
22,000 ft	72.4	63.7	52.8	52.1
3,000 ft	57.3	54.9	49.4	48.8
0 ft	54.9	54.9	49.4	48.8

These new values include 2% increase compared to former values (4-200-05A page 1/2).

One engine operative or one bleed inoperative minimum N1:

Z TAT	-30 °C	-15 °C	0 °C	+10 °C
31,000 ft	82.4	77.0	64.0	58.0
22,000 ft	79.2	72.0	59.8	56.6
3,000 ft	71.2	66.4	59.8	49.3
0 ft	64.2	63.7	59.8	49.3

These new values include 2% increase compared to former values (4-200-05A page 1/2).

TAT – Total Air Temperature

Z - Altitude

Note 1: Maintaining the N1 above the minimum anti-ice N1 on all engines may lead to exceedance of approach speed. Early approach or landing configuration of an aeroplane and/or application of airbrakes may be used to control the airspeed. In approach and landing and for a limited duration up to three minutes, selection of N1 speeds below the minimum anti-ice N1 speed is authorized. In this case it is necessary to disengage the autothrottle.

Effectivity: F2000EX (LX/S variants) S/N 263 to 305, 307 to 313, 315, 320, 701 to 734 without Dassault Aviation SB F2000EX-393.

(h) New Actions: Inspection, Part Replacement, Part Re-identification

Within 9 months after the effective date of this AD: Do a detailed inspection of the wing anti-ice system ducting (anti-ice pipes) for the presence of a diaphragm, and do all applicable actions specified in paragraph (h)(1) or (h)(2) of this AD, in accordance with the Accomplishment Instructions of Dassault Service Bulletin F900EX-464, dated June 20, 2016; or Service Bulletin F2000EX-393, dated June 20, 2016; as applicable. After the applicable actions specified in paragraph (h)(1) or (h)(2) of this AD have been completed, the AFM revision required by paragraph (g) of this AD may be removed from the AFM for that airplane.

- (1) If during the inspection required by paragraph (h) of this AD it is determined that a diaphragm is present: Before further flight, replace the wing anti-ice system ducting.
- (2) If during the inspection required by paragraph (h) of this AD it is determined that a diaphragm is not present: Before further flight, do a check of the anti-ice pipe part number and re-identify the wing anti-ice system ducting.

(i) Other FAA AD Provisions

The following provisions also apply to this AD:

(1) Alternative Methods of Compliance (AMOCs): The Manager, International Branch, ANM-116, Transport Airplane Directorate, FAA, has the authority to approve AMOCs for this AD, if requested using the procedures found in 14 CFR 39.19. In accordance with 14 CFR 39.19, send your request to your principal inspector or local Flight Standards District Office, as appropriate. If sending information directly to the

International Branch, send it to the attention of the person identified in paragraph (j)(2) of this AD. Information may be emailed to: 9-ANM-116-AMOC-REQUESTS@faa.gov. Before using any approved AMOC, notify your appropriate principal inspector, or lacking a principal inspector, the manager of the local flight standards district office/certificate holding district office.

(2) Contacting the Manufacturer: For any requirement in this AD to obtain corrective actions from a manufacturer, the action must be accomplished using a method approved by the Manager, International Branch, ANM-116, Transport Airplane Directorate, FAA; or the European Aviation Safety Agency (EASA); or Dassault Aviation's EASA Design Organization Approval (DOA). If approved by the DOA, the approval must include the DOA-authorized signature.

(j) Related Information

- (1) Refer to Mandatory Continuing Airworthiness Information (MCAI)

 Emergency Airworthiness Directive 2016-0130-E, dated July 5, 2016, for related information. This MCAI may be found in the AD docket on the Internet at http://www.regulations.gov by searching for and locating Docket No. FAA-2017-0494.
- (2) For more information about this AD, contact Tom Rodriguez, Aerospace Engineer, International Branch, ANM-116, Transport Airplane Directorate, FAA, 1601 Lind Avenue SW., Renton, WA 98057-3356; telephone 425-227-1137; fax 425-227-1149.

(3) For service information identified in this AD, contact Dassault Falcon Jet

Corporation, Teterboro Airport, P.O. Box 2000, South Hackensack, NJ 07606; telephone

201-440-6700; Internet http://www.dassaultfalcon.com. You may view this referenced

service information at the FAA, Transport Airplane Directorate, 1601 Lind Avenue SW.,

Renton, WA. For information on the availability of this material at the FAA, call

425-227-1221.

Issued in Renton, Washington, on May 15, 2017.

Michael Kaszycki,

Acting Manager,

Transport Airplane Directorate,

Aircraft Certification Service.

[FR Doc. 2017-10545 Filed: 5/26/2017 8:45 am; Publication Date: 5/30/2017]

16